\(\int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx\) [662]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 370 \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=-\frac {2 a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{b^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 a \left (3 a^2-7 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}-\frac {2 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \]

[Out]

-2/3*a^2*sec(d*x+c)^(3/2)*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)-2/3*a^2*(3*a^2-7*b^2)*sin(d*x+c)*sec
(d*x+c)^(1/2)/b^2/(a^2-b^2)^2/d/(a+b*sec(d*x+c))^(1/2)-2/3*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*E
llipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/b/(a^2-b^
2)/d/(a+b*sec(d*x+c))^(1/2)+2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,
2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/b^2/d/(a+b*sec(d*x+c))^(1/2)+2/3*a*(3
*a^2-7*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/
2))*(a+b*sec(d*x+c))^(1/2)/b^2/(a^2-b^2)^2/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 1.30 (sec) , antiderivative size = 370, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3930, 4183, 4193, 3944, 2886, 2884, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=-\frac {2 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2-7 b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 b^2 d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}-\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {2 a \left (3 a^2-7 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 b^2 d \left (a^2-b^2\right )^2 \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{b^2 d \sqrt {a+b \sec (c+d x)}} \]

[In]

Int[Sec[c + d*x]^(7/2)/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(-2*a*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(3*b*(a^2 -
 b^2)*d*Sqrt[a + b*Sec[c + d*x]]) + (2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a
+ b)]*Sqrt[Sec[c + d*x]])/(b^2*d*Sqrt[a + b*Sec[c + d*x]]) + (2*a*(3*a^2 - 7*b^2)*EllipticE[(c + d*x)/2, (2*a)
/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*b^2*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x
]]) - (2*a^2*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*b*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) - (2*a^2*(3*a^2 -
 7*b^2)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*b^2*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3930

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a^2)
*d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 3)/(b*f*(m + 1)*(a^2 - b^2))), x] + Dist
[d^3/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)*Simp[a^2*(n - 3) + a*b
*(m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*(m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] &&
 NeQ[a^2 - b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n, 2]))

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4183

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d)*(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*
(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 1)/(b*f*(a^2 - b^2)*(m + 1))), x] + Dist[d/(b*(a^2 - b^2)*
(m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A*b^2*(n - 1) - a*(b*B - a*C)*(n - 1)
 + b*(a*A - b*B + a*C)*(m + 1)*Csc[e + f*x] - (b*(A*b - a*B)*(m + n + 1) + C*(a^2*n + b^2*(m + 1)))*Csc[e + f*
x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 4193

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 \int \frac {\sqrt {\sec (c+d x)} \left (\frac {a^2}{2}-\frac {3}{2} a b \sec (c+d x)-\frac {3}{2} \left (a^2-b^2\right ) \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx}{3 b \left (a^2-b^2\right )} \\ & = -\frac {2 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {4 \int \frac {\frac {1}{4} a^2 \left (3 a^2-7 b^2\right )+\frac {1}{2} a b \left (a^2-3 b^2\right ) \sec (c+d x)+\frac {3}{4} \left (a^2-b^2\right )^2 \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 b^2 \left (a^2-b^2\right )^2} \\ & = -\frac {2 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{b^2}+\frac {4 \int \frac {\frac {1}{4} a^2 \left (3 a^2-7 b^2\right )+\frac {1}{2} a b \left (a^2-3 b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 b^2 \left (a^2-b^2\right )^2} \\ & = -\frac {2 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {\left (a \left (3 a^2-7 b^2\right )\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 b^2 \left (a^2-b^2\right )^2}-\frac {a \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b \left (a^2-b^2\right )}+\frac {\left (\sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{b^2 \sqrt {a+b \sec (c+d x)}} \\ & = -\frac {2 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (a \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 b \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {\left (\sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{b^2 \sqrt {a+b \sec (c+d x)}}+\frac {\left (a \left (3 a^2-7 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 b^2 \left (a^2-b^2\right )^2 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{b^2 d \sqrt {a+b \sec (c+d x)}}-\frac {2 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 b \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {\left (a \left (3 a^2-7 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 b^2 \left (a^2-b^2\right )^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = -\frac {2 a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{b^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 a \left (3 a^2-7 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}-\frac {2 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2-7 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.17 (sec) , antiderivative size = 487, normalized size of antiderivative = 1.32 \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {\sec ^{\frac {5}{2}}(c+d x) \left (\frac {4 a b^2 \left (a^2-3 b^2\right ) \left (\frac {b+a \cos (c+d x)}{a+b}\right )^{5/2} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{(a-b)^2}+\frac {b \left (9 a^4-19 a^2 b^2+6 b^4\right ) \left (\frac {b+a \cos (c+d x)}{a+b}\right )^{5/2} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{(a-b)^2}+\frac {i \left (\frac {1}{a-b}\right )^{3/2} \left (3 a^2-7 b^2\right ) \sqrt {-\frac {a (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {a (1+\cos (c+d x))}{a-b}} (b+a \cos (c+d x))^{5/2} \csc (c+d x) \left (-2 b (a+b) E\left (i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {-a+b}{a+b}\right )+a \left (2 b \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right ),\frac {-a+b}{a+b}\right )+a \operatorname {EllipticPi}\left (1-\frac {a}{b},i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right ),\frac {-a+b}{a+b}\right )\right )\right )}{(a+b)^2}+\frac {2 a^2 b^2 (b+a \cos (c+d x)) \sin (c+d x)}{-a^2+b^2}+\frac {2 a^2 b \left (-3 a^2+7 b^2\right ) (b+a \cos (c+d x))^2 \sin (c+d x)}{\left (a^2-b^2\right )^2}\right )}{3 b^3 d (a+b \sec (c+d x))^{5/2}} \]

[In]

Integrate[Sec[c + d*x]^(7/2)/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(Sec[c + d*x]^(5/2)*((4*a*b^2*(a^2 - 3*b^2)*((b + a*Cos[c + d*x])/(a + b))^(5/2)*EllipticF[(c + d*x)/2, (2*a)/
(a + b)])/(a - b)^2 + (b*(9*a^4 - 19*a^2*b^2 + 6*b^4)*((b + a*Cos[c + d*x])/(a + b))^(5/2)*EllipticPi[2, (c +
d*x)/2, (2*a)/(a + b)])/(a - b)^2 + (I*((a - b)^(-1))^(3/2)*(3*a^2 - 7*b^2)*Sqrt[-((a*(-1 + Cos[c + d*x]))/(a
+ b))]*Sqrt[(a*(1 + Cos[c + d*x]))/(a - b)]*(b + a*Cos[c + d*x])^(5/2)*Csc[c + d*x]*(-2*b*(a + b)*EllipticE[I*
ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*(2*b*EllipticF[I*ArcSinh[Sqrt[(a -
 b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*EllipticPi[1 - a/b, I*ArcSinh[Sqrt[(a - b)^(-1)]*Sq
rt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)])))/(a + b)^2 + (2*a^2*b^2*(b + a*Cos[c + d*x])*Sin[c + d*x])/(-a^2
+ b^2) + (2*a^2*b*(-3*a^2 + 7*b^2)*(b + a*Cos[c + d*x])^2*Sin[c + d*x])/(a^2 - b^2)^2))/(3*b^3*d*(a + b*Sec[c
+ d*x])^(5/2))

Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 8.97 (sec) , antiderivative size = 4415, normalized size of antiderivative = 11.93

method result size
default \(\text {Expression too large to display}\) \(4415\)

[In]

int(sec(d*x+c)^(7/2)/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d/((a-b)/(a+b))^(1/2)/(a+b)^2/(a-b)/b^2*(-((1-cos(d*x+c))^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2
-1))^(7/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^4*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)
^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(-3*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc
(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)
+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^4*(1-cos(d*x+c))^2*csc(d*x+c)^2-3*((a-b)/(a+b))^(1/2)*a^4*(-cot(d*x+c)+cs
c(d*x+c))-13*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+
c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b
^2*(1-cos(d*x+c))^2*csc(d*x+c)^2+6*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+
b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+
b)/(a-b))^(1/2))*a*b^3*(1-cos(d*x+c))^2*csc(d*x+c)^2+3*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*c
sc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+
c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b*(1-cos(d*x+c))^2*csc(d*x+c)^2+7*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-
b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+
b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^2*(1-cos(d*x+c))^2*csc(d*x+c)^2-7*(-(a*(1-cos(d
*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2
)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^3*(1-cos(d*x+c))^2*csc(d*x+
c)^2+12*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2
*csc(d*x+c)^2+1)^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/
2))*a^2*b^2*(1-cos(d*x+c))^2*csc(d*x+c)^2+6*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2
-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+
c)),(-(a+b)/(a-b))^(1/2))*a^4*(1-cos(d*x+c))^2*csc(d*x+c)^2+3*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+
c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-c
ot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^4*(1-cos(d*x+c))^2*csc(d*x+c)^2-5*((a-b)/(a+b))^(1/2)*a^3*b*(-co
t(d*x+c)+csc(d*x+c))+5*((a-b)/(a+b))^(1/2)*a^2*b^2*(-cot(d*x+c)+csc(d*x+c))+7*((a-b)/(a+b))^(1/2)*a*b^3*(-cot(
d*x+c)+csc(d*x+c))+3*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-
cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2
))*a^4+6*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^
2*csc(d*x+c)^2+1)^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1
/2))*a^4-6*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c)
)^2*csc(d*x+c)^2+1)^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^
(1/2))*b^4+3*((a-b)/(a+b))^(1/2)*a^4*(1-cos(d*x+c))^5*csc(d*x+c)^5-6*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-c
os(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1
/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^4+3*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2
*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*
x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^4-6*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^
2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*
x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*a^4*(1-cos(d*x+c))^2*csc(d*x+c)^2-6*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^
2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticPi(((a-b)/
(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*b^4*(1-cos(d*x+c))^2*csc(d*x+c)^2+3*(
-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+
c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b-7*(-(a*(1-cos
(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1
/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^2-10*(-(a*(1-cos(d*x+c)
)^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*Ell
ipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b+5*(-(a*(1-cos(d*x+c))^2*csc(d*
x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a
-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^2+12*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-
b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+
b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^3-7*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d
*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*
(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^3+12*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*
csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*
x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*a^3*b-12*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c
))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(-c
ot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*a*b^3-3*((a-b)/(a+b))^(1/2)*a^3*b*(1-cos(d*x+c))^5*cs
c(d*x+c)^5-7*((a-b)/(a+b))^(1/2)*a^2*b^2*(1-cos(d*x+c))^5*csc(d*x+c)^5+7*((a-b)/(a+b))^(1/2)*a*b^3*(1-cos(d*x+
c))^5*csc(d*x+c)^5-8*((a-b)/(a+b))^(1/2)*a^3*b*(1-cos(d*x+c))^3*csc(d*x+c)^3-2*((a-b)/(a+b))^(1/2)*a^2*b^2*(1-
cos(d*x+c))^3*csc(d*x+c)^3+14*((a-b)/(a+b))^(1/2)*a*b^3*(1-cos(d*x+c))^3*csc(d*x+c)^3-2*(-(a*(1-cos(d*x+c))^2*
csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*Ellipti
cF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b*(1-cos(d*x+c))^2*csc(d*x+c)^2)/((1
-cos(d*x+c))^2*csc(d*x+c)^2+1)^4/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)^2

Fricas [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^(7/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**(7/2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {7}{2}}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^(7/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(7/2)/(b*sec(d*x + c) + a)^(5/2), x)

Giac [F]

\[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {7}{2}}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^(7/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(7/2)/(b*sec(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((1/cos(c + d*x))^(7/2)/(a + b/cos(c + d*x))^(5/2),x)

[Out]

int((1/cos(c + d*x))^(7/2)/(a + b/cos(c + d*x))^(5/2), x)